본문 바로가기

IT/Deeplearning

[CNN classifier / YOLO DARKNET] classifier code review :: load_network- [2.1]

1. [CNN classifier / YOLO DARKNET] classifier code review :: Intro- [1]


이번 포스팅에서는 1. [CNN classifier / YOLO DARKNET] classifier code review :: Intro- [1]에서 진행했던 리뷰에서 


조금 더 자세히 들어가서 리뷰를 진행하도록 하겠습니다.


이번 포스팅은 predict_classifier 함수에서 첫번째 줄인, load_network에 대해서 살펴보도록 하겠습니다.


1. predict_classifier :: example/classifier.c


load_network는 predict_classifier에서 1번째 라인에 위치하고 있습니다.



void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
{
    network *net = load_network(cfgfile, weightfile, 0);
...
}


2. load_network :: src/network.c


load_network함수의 코드 구성은 아래와 같습니다.


1. *.cfg파일에서 network에 대한 내용을 parsing합니다.

2. parsing한 내용을 기반으로 network구조체를 초기화합니다.

3. *.weights파일이 존재한다면, weights파일을 로드합니다.

4. 파싱하고, weights파일을 로드한 network 구조체를 반환합니다.


network *load_network(char *cfg, char *weights, int clear)
{
    network *net = parse_network_cfg(cfg);
    if(weights && weights[0] != 0){
        load_weights(net, weights);
    }
    if(clear) (*net->seen) = 0;
    return net;
}


2-1. parse_network_cfg :: src/parse.c


parse_network_cfg함수의 코드 구성은 아래와 같습니다.


1. *.cfg파일을 parsing합니다.

2. network 구조체를 초기화합니다.

3. network 구조체에 gpu index에 대한 내용을 설정해줍니다.

4. *.cfg 내용이 담긴 구조체에서 제일 앞단의 노드를 가지고 옵니다.

5. 가져온 제일 앞단의 노드로 부터 section구조체를 가져옵니다.

5. section구조체로부터 options에 대한 내용이 담긴 리스트 구조체를 불러옵니다.

6. 불러온 options 내용을 가지고 network구조체 설정을 진행합니다.

7. params 구조체에 여태까지 정리된 network구조체에 대한 내용을 대입합니다.

8. *.cfg파일에 있는 network layer들에 대한 내용을 설정합니다. (CPU/GPU에 대해 모두 정리)

9. network 구조체를 반환합니다.


network *parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network *net = make_network(sections->size - 1);
    net->gpu_index = gpu_index;
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, net);

    params.h = net->h;
    params.w = net->w;
    params.c = net->c;
    params.inputs = net->inputs;
    params.batch = net->batch;
    params.time_steps = net->time_steps;
    params.net = net;

    size_t workspace_size = 0;
    n = n->next;
    int count = 0;
    free_section(s);
    fprintf(stderr, "layer     filters    size              input                output\n");
    while(n){
        params.index = count;
        fprintf(stderr, "%5d ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        LAYER_TYPE lt = string_to_layer_type(s->type);
        if(lt == CONVOLUTIONAL){
            l = parse_convolutional(options, params);
        }else if(lt == DECONVOLUTIONAL){
            l = parse_deconvolutional(options, params);
        }else if(lt == LOCAL){
            l = parse_local(options, params);
        }else if(lt == ACTIVE){
            l = parse_activation(options, params);
        }else if(lt == RNN){
            l = parse_rnn(options, params);
        }else if(lt == GRU){
            l = parse_gru(options, params);
        }else if (lt == LSTM) {
            l = parse_lstm(options, params);
        }else if(lt == CRNN){
            l = parse_crnn(options, params);
        }else if(lt == CONNECTED){
            l = parse_connected(options, params);
        }else if(lt == CROP){
            l = parse_crop(options, params);
        }else if(lt == COST){
            l = parse_cost(options, params);
        }else if(lt == REGION){
            l = parse_region(options, params);
        }else if(lt == DETECTION){
            l = parse_detection(options, params);
        }else if(lt == SOFTMAX){
            l = parse_softmax(options, params);
            net->hierarchy = l.softmax_tree;
        }else if(lt == NORMALIZATION){
            l = parse_normalization(options, params);
        }else if(lt == BATCHNORM){
            l = parse_batchnorm(options, params);
        }else if(lt == MAXPOOL){
            l = parse_maxpool(options, params);
        }else if(lt == REORG){
            l = parse_reorg(options, params);
        }else if(lt == AVGPOOL){
            l = parse_avgpool(options, params);
        }else if(lt == ROUTE){
            l = parse_route(options, params, net);
        }else if(lt == SHORTCUT){
            l = parse_shortcut(options, params, net);
        }else if(lt == DROPOUT){
            l = parse_dropout(options, params);
            l.output = net->layers[count-1].output;
            l.delta = net->layers[count-1].delta;
#ifdef GPU
            l.output_gpu = net->layers[count-1].output_gpu;
            l.delta_gpu = net->layers[count-1].delta_gpu;
#endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.truth = option_find_int_quiet(options, "truth", 0);
        l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
        l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1);
        l.smooth = option_find_float_quiet(options, "smooth", 0);
        option_unused(options);
        net->layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
    }
    free_list(sections);
    layer out = get_network_output_layer(net);
    net->outputs = out.outputs;
    net->truths = out.outputs;
    if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
    net->output = out.output;
    net->input = calloc(net->inputs*net->batch, sizeof(float));
    net->truth = calloc(net->truths*net->batch, sizeof(float));
#ifdef GPU
    net->output_gpu = out.output_gpu;
    net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
    net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
#endif
    if(workspace_size){
        //printf("%ld\n", workspace_size);
#ifdef GPU
        if(gpu_index >= 0){
            net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net->workspace = calloc(1, workspace_size);
        }
#else
        net->workspace = calloc(1, workspace_size);
#endif
    }
    return net;
}